Cap-independent translation conferred by the 5' leader of tobacco etch virus is eukaryotic initiation factor 4G dependent.
نویسنده
چکیده
The 5' leader of tobacco etch virus (TEV) genomic RNA directs efficient translation from the naturally uncapped viral mRNA. Two distinct regions within the TEV 143-nucleotide leader confer cap-independent translation in vivo even when present in the intercistronic region of a discistronic mRNA, indicating that the TEV leader contains an internal ribosome entry site (IRES). In this study, the requirements for TEV IRES activity were investigated. The TEV IRES enhanced translation of monocistronic or dicistronic mRNAs in vitro under competitive conditions, i.e., at high RNA concentration or in lysate partially depleted of eukaryotic initiation factor 4F (eIF4F) and eIFiso4F, the two cap binding complexes in plants. The translational advantage conferred by the TEV IRES under these conditions was lost when the lysate reduced in eIF4F and eIFiso4F was supplemented with eIF4F (or, to a lesser extent, eIFiso4F) but not when supplemented with eIF4E, eIFiso4E, eIF4A, or eIF4B. eIF4G, the large subunit of eIF4F, was responsible for the competitive advantage conferred by the TEV IRES. TEV IRES activity was enhanced moderately by the poly(A)-binding protein. These observations suggest that the TEV IRES directs cap-independent translation through a mechanism that involves eIF4G specifically.
منابع مشابه
Identification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation.
Translation in plants is highly cap dependent, and the only plant mRNAs known to naturally lack a cap structure (m(7)GpppN) are viral in origin. The genomic RNA of tobacco etch virus (TEV), a potyvirus that belongs to the picornavirus superfamily, is a polyadenylated mRNA that is naturally uncapped and yet is a highly competitive mRNA during translation. The 143-nucleotide 5' leader is responsi...
متن کاملInternal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles
The recombinant mRNAs with 5'-untranslated region, called omega leader, of tobacco mosaic virus RNA are known to be well translated in eukaryotic cell-free systems, even if deprived of cap structure. Using the method of primer extension inhibition (toe-printing), the ribosomal particles were shown to initiate translation at uncapped omega leader when its 5'-end was blocked by a stable RNA-DNA d...
متن کاملKinetic mechanism for the binding of eIF4F and tobacco Etch virus internal ribosome entry site rna: effects of eIF4B and poly(A)-binding protein.
The wheat germ eukaryotic translation initiation factor (eIF) 4F binds tightly to the mRNA internal ribosome entry site (IRES) of tobacco etch virus (TEV) to promote translation initiation. When eIF4F is limiting, TEV is preferentially translated compared with host cell mRNA. To gain insight into the dynamic process of protein synthesis initiation and the mechanism of binding, the kinetics of e...
متن کاملThe 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F.
The 5'-leader sequence (called Omega) of tobacco mosaic virus (TMV) functions as a translational enhancer in plants. A poly(CAA) region within Omega is responsible for the translation enhancement and serves as a binding site for the heat shock protein, HSP101, which is required for the translational enhancement. Genetic analysis of the HSP101-mediated enhancement of translation from Omega-conta...
متن کاملMapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation.
Cap-dependent binding of mRNA to the 40 S ribosomal subunit during translational initiation requires the association of eukaryotic initiation factor 4G (eIF4G; formerly eIF-4 gamma and p220) with other initiation factors, notably eIF4E, eIF4A, and eIF3. Infection of cells by picornaviruses results in proteolytic cleavage of eIF4G and generation of a cap-independent translational state. Rhinovir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 75 24 شماره
صفحات -
تاریخ انتشار 2001